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Artificial neural networks represent a simple but efficient way to model and correct known errors existing
between commonly used density functional computations and experimental data. The recently proposed X1
approach combines B3LYP energies with a neural-network correction. The latter receives input from a set of
physical descriptors, which are primarily based on B3LYP energies. The method shows remarkable
improvements for enthalpies of formation and bond energies, for molecules containing first and second row
elements, in comparison to B3LYP. Here, reaction enthalpies of organic compounds containing H, C, N, and
O are derived using the X1 method, as well as B3LYP, M05-2X, and G3. Despite the seemingly impressive
results obtained with X1, our study reveals that underlying problems with B3LYP descriptions of medium
and long-range correlation remain. Thus, X1, like B3LYP, breaks down when describing both linear and
branched organic molecules. These deficiencies likely arise from the improper or insufficient selection of
physical descriptors. To improve the B3LYP energies by means of a neural-network correction, we stress the
importance of considering protobranching-dependent descriptors in the input layer of the neural network.

Introduction

Becke’s three-parameter hybrid method (B3LYP)1,2 remains
the most commonly used exchange correlation density functional
among chemists, despite recognized errors when computing
energies of basic organic molecules.3-17 Known problems, such
as predictions of alkane isomerization energies, have been
attributed to failures in describing van der Waals interactions,18

medium-range electron correlation,8 and many electron self-
interaction errors.19-23 Various approaches designed to lessen
these problems have been developed to date (see e.g., refs
24–47). Most are based on the extension of the exchange-
correlation potential (νxc) by a nonlocal van der Waals term,43,44

the superimposition of a pairwise interatomic potential,27 the
direct fitting of νxc to data sets of weakly bond compounds,45

or the empirical calibration of dispersion corrected atomic
potentials.28,46,47

Another simple yet efficient way to correct such errors is to
model the complex relationship between the first-principles
computation and the experimental data with the goal of using
this relation to eliminate the deviation. Artificial neural networks
(NN) are one approach of this kind. Inspired by the primary
work of Hu et al.,48 who developed a neural-network-based
approach to improve the B3LYP heats of formation of 180
organic molecules, Wu and Xu49-51 recently introduced a similar
NN-based method called X1. The latter was shown to drastically
improve the prediction of B3LYP heats of formation on an
extended set of 370 molecules presenting large structural
diversity. Both methods combine B3LYP with a three layered
neural-network correction but differ in the selection of input
descriptors. In the input layer of the X1 method, the network
receives inputs from a set of physical descriptors consisting of
B3LYP energies, unscaled zero-point vibrational energy (ZPE),
the number of electrons, and the number of each constituent

element. The output layer provides the corrected values, while
the hidden layer serves to adjust the connections so that the
error in the output values is minimal.50 This NN scheme was
used to compute the heats of formation of compounds containing
all first and second row elements except He, Ne, and Ar,
producing results similar to those of the Gaussian composite
methods52 for the G3/99 test set. The error for bond energies of
compounds containing first and second row elements was even
reduced by 3.81 kcal/mol over B3LYP.53 Despite this remarkable
performance, one may wonder if “molecular” descriptors based
primarily on B3LYP potential energy surfaces would not result
in deficiencies similar to those of B3LYP for pathological
systems. In this Article, we address this question by evaluating* Corresponding author. E-mail: clemence.corminboeuf@epfl.ch.

Figure 1. Schematic representation of linear and branched alkane
compounds (A set).
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the performance of such a method in the determination of the
enthalpies of reaction for small to medium-sized organic
molecules.

Methods

165 H-, C-, N-, and O-containing compounds with diverse
structural and electronic features (e.g., branched, conjugated,
hyperconjugated, benzene moieties, etc.) having experimental
data were selected. Results were compared to the standard
B3LYP functional, the M05-2X functional25 (which was previ-
ously shown to be the best performing functional for hydro-

carbon thermochemistry16), and the G3 composite method.52

Bond separation reaction54-57 enthalpies for a series of 26 linear
and branched alkanes (A1-A26, Figure 1), 44 additional
hydrocarbons (C1-C44, Figure 2), 42 nitrogen-containing
organic (N1-N42, Figure 3), and 53 oxygen-containing organic
compounds (O1-O53, Figure 4) were compared to experimental
data derived from the NIST thermochemical database.58 B3LYP
and M05-2X computations employed the same basis sets as used
for the X1 method [geometry optimization and zero-point/
thermal corrections at 6-311+G(d,p) and single point electronic
energy using the 6-311+G(3df,2p) basis set]. All computations
were done using the Gaussian 0359 and NWChem60 suite of
programs. Mean absolute deviations (MADs) and mean signed
deviations (MSDs) serve to evaluate the performance of the
various methods. The MAD gives the average unsigned devia-
tion from experiment, while the MSD gives the average signed
deviation.

Figure 2. Schematic representation of other hydrocarbon molecules
(C set).

Figure 3. Schematic representation of nitrogen-containing organic
molecules (N set).

Figure 4. Schematic representation of oxygen-containing organic
molecules (O set).

Figure 5. Mean absolute deviations for bond separation reactions for
various molecular sets.
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Results and Discussion

Figure 1 illustrates a test set of 26 linear and branched
hydrocarbon molecules (A set) for which DFT and in particular
B3LYP has been shown to perform poorly.12,42 These failures
have been attributed to the poor description of protobranching61

interactions present in linear and branched alkanes, believed to
arise from medium and long-range electron correlation.18 The
results carry no surprise (see Table 1); the B3LYP functional
is the worst performer among the four methods tested. M05-
2X greatly reduces errors over B3LYP, due to its enhanced

description of medium-range electron correlation brought about
by improved dependence on the spin kinetic energy density.
The smallest errors are given by the G3 composite method,
which incorporates electron correlation by using perturbation
and configuration interaction theory. At first glance, the B3LYP-
based X1 method performs impressively well: the MAD (Figure
5 and Table 1) is ∼75% less than that of B3LYP, and the MSD
(Table 1) indicates that the method is nearly free from systematic
errors. While the combination of B3LYP with a neural-network
correction seems to compensate the poor description of reaction

TABLE 1: Mean Absolute (MAD) and Mean Signed (MSD) Deviations from Experiment (in kcal/mol) for the Bond Separation
Reactions of Relevant Test Sets

B3LYP X1 G3 M05-2X

MAD MSD MAD MSD MAD MSD MAD MSD

A set 8.10 -8.10 2.14 -0.83 0.36 -0.32 1.99 -1.99
C set 3.18 -1.63 2.95 0.53 1.46 -0.37 3.02 -2.45
A+C sets 5.01 -4.03 2.65 0.02 1.05 -0.35 2.64 -2.28
N set 4.07 -2.60 3.43 -0.61 2.64 -0.36 3.03 -1.09
O set 3.24 -2.44 2.39 -0.18 2.20 -1.05 2.84 -1.65
all 4.20 -3.16 2.77 -0.21 1.82 -0.58 2.80 -1.77

Figure 6. Deviations from experiment for bond separation reactions for linear alkanes containing one (propane) to eight (n-decane) protobranches
and branched alkanes containing three (A3), six (A5), nine (A17), and twelve (A24) photobranches. In contrast to B3LYP, the X1 method overestimates
protobranching stabilization in linear n-alkanes but underestimates branched alkanes.

Figure 7. Computed C7H16 alkane isomer energy differences at various computational levels versus experiment.
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enthalpies by B3LYP, a close inspection indicates that X1
evidently fails to describe (proto)branched compounds. For
instance, while X1 overestimates the BSE of all linear alkane
chains (e.g., A25 by 3.40 kcal/mol), that of branched alkanes
is significantly underestimated (e.g., A17 by -4.89 kcal/mol).
As further illustrated in Figure 6, the NN-based B3LYP

correction suffers from a lack of consistency with respect to
the protobranch point topology by making an artificial distinction
between branched and linear alkanes.

Even more striking is the poor performance of X1 for
predicting alkane isomerization reactions (see Figure 7). In these
cases, both B3LYP and X1 show dramatic errors with respect
to the experimental (NIST) heats of formation of the medium
size C7H16 isomers chosen as an example. In sharp contrast,
M05-2X shows a more systematic improvement in the treatment
of (proto)branched compounds reducing the mean absolute
deviation.

The set of compounds given in Figure 2 (C set) contains fewer
examples of alkane branching and more examples of other
stereoelectronic effects such as hyperconjugation, conjugation,
ring strain, and resonance. The B3LYP description of the BSE
reactions of this set is far better than that for the first set of
molecules (Table 1). In fact, the MADs for B3LYP, M05-2X,
and the X1 method are relatively close, with the G3 composite
method again providing a superior description. Similarly, all
four methods perform relatively well for describing the isomer-
ization energies such as those illustrated by the C6H8 series in
Figure 8. A safe conclusion to draw is that the X1 method
performs well for hydrocarbons as long as B3LYP captures most
of the dominating electronic effects present in the set of
compounds being studied.

Figure 8. Computed C6H8 isomer energy differences at various
computational levels versus experiment.

Figure 9. Computed isomer energy differences for C4H10N (upper left), C6H7N (upper right), C4H10O (lower left), and C4H8O (lower left) at
various computational levels versus experiment.
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These general findings recur for the nitrogen and oxygen
derivatives that include the additional stereoelectronic effects
arising from the nitrogen and oxygen lone pairs (Figures 3 and
4). BSE reactions of branched compounds such as N2, N8, O2,
and O10 are overestimated by X1 and underestimated by
B3LYP. Although to a lesser extent than hydrocarbons, the
disagreement with experiment is more apparent when consider-
ing the reactions of the branched structural isomers of C4H11N
and C4H10O as illustrated in Figure 9. Other stereoelectronic
effects are generally well described, although aromatic rings
incorporating nitrogen atoms (i.e., N34, N35, N37, and N38)
have large errors with all methods tested.

We now return to the important question regarding the
selection of proper physical descriptors in the X1 neural-
network-based method. Because this study emphasizes the poor
description of protobranching interactions, which arise in
B3LYP prediction of alkane isomerization energies, any im-
provements should focus on describing the branching in a more
accurate or explicit manner. However, the descriptors selected
for the input layer of the X1 method are either branching-
independent (Ne, NC, etc.) or B3LYP-dependent (∆Hf

B3LYP,
ZPE). This inadequate selection or insufficient number of
descriptors in the input layer is a likely explanation for the
observed collapse of the X1 method for saturated hydrocarbons
and their derivatives. There is no doubt that the inclusion of
the number of branching points in the input descriptors will
lead to more satisfactory results for these sets of compounds.

Conclusions

The recently proposed X1 method based on a neural-network
scheme has a significantly lower mean absolute deviation than
does B3LYP for the 165 bond separation reactions tested herein
(Figure 5 and Table 1). This is noteworthy as the heats of
formation computed by the X1 method are derived directly from
B3LYP energies, zero-point vibrational energies, and a com-
pound’s stochiometry. However, despite this seemingly overall
improvement, the NN-based correction (Table 1) suffers from
the same inherent defects as B3LYP, which lead to poor BSE
reaction energies and disastrous predictions of isomerization
energies for linear and branched alkanes. For conjugated
hydrocarbons as well as their nitrogen- and oxygen-containing
derivatives, the agreement with experiments is, in contrast,
generally quite good. Such a deficiency again points to the
importance of propane-like branching interactions, whose treat-
ment remains a problem for DFT but also provides insights for
improvement. To improve the B3LYP energies by means of a
neural-network correction, it is therefore necessary to introduce
more physical descriptors in the input layer such as the number
of protobranched points or the number of adjacent sp3 carbons.
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